
 

INTERNATIONAL JOURNAL OF SURGERY 12 (2025) 
 

                                                      Contents lists available at: IJS 
 

 

 

        International Journal of Surgery 

 

Journal homepage: ijsopen.org 

 

 

 
*Corresponding author: Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 73, Qingchun Road, 

Shangcheng District, Hangzhou, China; E-mail: yandanfang@zju.edu.cn (Danfang Yan) 

Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 73, Qingchun Road, Shangcheng District, Hangzhou, 

China; E-mail: yansenxiang@zju.edu.cn (Senxiang Yan) 

 

https://dx.doi.org/10.60122/j.IJS.2025.20.02 

Received 12 July, 2025; Accepted 7 August, 2025 

Available online 15 September, 2025 

© 2025 The Author.   Published by International Journal of Surgery. This is an open access article under the CC BY license.  

(http://creativecommons.org/licenses/by/4.0/). 

Research Article 

Elevating Clinical and Surgical Planning in Nasopharyngeal Carcinoma: A 

Comparative Assessment of Large Reasoning and Language Models 

Lihong Wang1#, Luxun Wu1#, Feng Jiang2, Wenxiang Li1, Yang Yang3, Kung Wang1, Senxiang Yan1* and Danfang 

Yan1* 

1Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 
2Department of Radiation Oncology, Cancer Hospital of the University of the Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou, China 
3Department of Otolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 
#Contributed equally to this work and share first authorship 

 

A R T I C L E  I N F O 

Keywords:  

Large reasoning models 

large language models 

nasopharyngeal carcinoma 

radiation oncology 

clinical decision support 

artificial intelligence 

comparative evaluation 

 
A B S T R A C T 

Purpose: This study aimed to comparatively evaluate the performance of large language models (LLMs) 

and large reasoning models (LRMs) in addressing clinical management challenges associated with 

nasopharyngeal carcinoma (NPC), a complex domain within radiation oncology. 

Methods: Five AI models, three LLMs (GPT-4, GPT-4o, and Gemini 2.0 Flash) and two LRMs [Deepseek-

R1 and Grok 3 (Think)], were assessed using a custom-designed set of 50 open-ended questions spanning 

five key modules of NPC management. Responses were independently scored by two radiation oncologists 

in a single-blinded manner using a standardized rubric. Statistical analyses were conducted to compare 

model performance. 

Results: The LRMs achieved higher mean scores (range: 16.66-17.44) than the LLMs (range: 14.04-15.54). 

Overall, Grok 3 (Think) and Deepseek-R1 significantly outperformed ChatGPT-4 and Gemini 2.0 Flash, 

while GPT-4o demonstrated superior performance compared to ChatGPT-4 (P = 0.047). Module-specific 

analyses revealed that Grok 3 (Think) and Deepseek-R1 consistently outperformed others, particularly in 

complex domains such as multidisciplinary treatment and radiotherapy. In multidimensional assessment, 

Grok 3 (Think) achieved the highest accuracy (84.0%) and relevance (91.6%), whereas Deepseek-R1 

excelled in comprehensiveness (83.2%). Nonetheless, all models exhibited notable limitations, including 

outdated content, hallucinations, and inadequate source attribution. 

Conclusion: LRMs demonstrate superior performance compared to LLMs in addressing open-ended 

clinical questions related to NPC management and hold substantial promise for clinical decision support in 

radiation oncology. However, rigorous validation and cautious interpretation of AI-generated content 

remain essential to ensure reliability in clinical practice. 

 

 

 

Highlights 

 

i) The advent of large reasoning models (LRMs) has markedly enhanced 

the capabilities of generative AI in supporting complex clinical decision-

making. 

ii) A set of open-ended clinical questions specific to nasopharyngeal 

carcinoma was developed, offering a focused framework to assess AI 

performance in radiation oncology. 

iii) LRMs, particularly Grok 3 (Think), consistently outperformed 

conventional large language models (LLMs), demonstrating higher 

mean scores and improved reliability in clinical decision support. 
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iv) Despite their promise, LRMs remain susceptible to hallucination 

errors, emphasizing the critical need for comprehensive validation 

before clinical implementation. 

 

1. Introduction 

 

Large language models (LLMs) have emerged as a transformative force 

in generative artificial intelligence (GenAI), enabling machines to 

understand and generate human-like text with remarkable accuracy and 

fluency [1, 2]. Among these, ChatGPT4 has become one of the most 

extensively studied models in the medical domain. Research has 

demonstrated its potential as a supplementary tool to enhance diagnostic 

accuracy, streamline data collection, improve patient communication, 

and support clinical decision-making [3-5]. A landmark randomized 

controlled trial further validated its utility, showing that ChatGPT4 

significantly improved physicians’ clinical decisions in complex 

scenarios compared to conventional online resources [6]. While 

ChatGPT4 excels at processing objective data, its performance remains 

constrained in situations involving subjective interpretation or nuanced 

clinical judgment [7]. 

 

The latest generation of LLMs, including GPT-4o, has introduced even 

greater capabilities and efficiency, surpassing its predecessor in both 

reasoning depth and speed [8]. Similarly, Google’s Gemini 2.0 Flash has 

demonstrated notable advancements over its earlier version, Google 

Bard [9]. These developments suggest an expanding role for GenAI in 

clinical workflows. Parallel to these improvements, a new class of AI 

systems, large reasoning models (LRMs) such as DeepSeek-R1 [10] and 

Grok 3 (Think) [11], has emerged. Built upon LLM foundations, LRMs 

incorporate sophisticated reasoning frameworks that allow for stepwise 

deliberation, mimicking human cognitive processes more closely than 

traditional LLMs [12, 13]. Despite their promising design, the real-world 

clinical utility of LRMs, especially in complex, high-stakes medical 

settings, remains largely untested. 

 

Nasopharyngeal carcinoma (NPC) presents an ideal clinical context for 

evaluating AI-driven decision support systems in radiation oncology. 

Effective NPC management demands the integration of diverse clinical 

tasks: accurate diagnostic staging, individualized radiotherapy planning, 

complication mitigation, and coordination across multidisciplinary 

teams [14]. These tasks require not only factual medical knowledge but 

also probabilistic reasoning, risk-benefit assessments, and interpretation 

of evolving clinical guidelines, making NPC a robust test case for AI 

capabilities. 

 

Despite growing interest in LLMs within healthcare, direct comparisons 

between LLMs and LRMs remain limited, particularly in open-ended 

clinical scenarios that demand sophisticated reasoning. Addressing this 

gap, our study systematically evaluates the performance of leading 

LLMs and LRMs in responding to open-ended clinical management 

questions specific to NPC. The question set, developed by senior 

radiation oncology experts, was designed to reflect real-world 

complexity and decision-making demands, while focusing on a single 

tumor type to ensure depth of evaluation. Moreover, the use of newly 

constructed questions minimized the risk of dataset contamination from 

model training data. 

 

By assessing how well these models handle complex clinical reasoning, 

formulate evidence-based treatment strategies, and offer contextually 

relevant recommendations, this study aims to clarify their respective 

strengths and limitations. Ultimately, the findings may inform strategies 

for optimizing AI integration into clinical workflows in radiation 

oncology, supporting more informed, consistent, and high-quality care. 

 

2. Methods 

 

This study compared the performance of three large language models 

(LLMs), GPT-4, GPT-4o, and Gemini 2.0 Flash, with two large 

reasoning models (LRMs), Deepseek-R1 and Grok 3 (Think). GPT-4 

and GPT-4o, both developed by OpenAI, require a “ChatGPT Plus” 

subscription for unrestricted access. Gemini 2.0 Flash, developed by 

Google, is freely available to the public. Deepseek-R1, developed by 

DeepSeek, is an openly accessible LRM. Grok 3 (Think), part of the 

Grok model series from xAI, was also publicly available, though full 

access to advanced features requires an “X Premium+” subscription. 

 

A question set was developed based on the clinical expertise of four 

board-certified radiation oncologists from academic medical centers, all 

of whom were attending physicians specializing in head and neck 

cancers. This set included 50 open-ended questions, evenly distributed 

across five clinical modules relevant to nasopharyngeal carcinoma 

(NPC): i) workup & follow-up, ii) staging, iii) radiotherapy, iv) 

multidisciplinary treatment, and v) toxicity (Supplementary Table S1). 

Each question was formulated in scientific language using appropriate 

clinical terminology. Each of the five AI models was tested using the full 

question set. Questions were manually submitted to each model in a 

single, uninterrupted session between February 15, 2025, and March 5, 

2025. No additional context, emphasis, or follow-up prompts were 

provided. All responses were collected and archived (Supplementary 

Table S2). Responses from each model were independently evaluated by 

two senior radiation oncologists, each with over 15 years of clinical 

experience. The evaluators were blinded to the identity of the AI model. 

Scoring was conducted on a standardized 0-20 scale based on four 

criteria: i) Comprehensiveness: Degree to which the response addressed 

all aspects of the question. ii) Accuracy: Alignment of the content with 

current clinical standards and expert knowledge. iii) Relevance: 

Appropriateness and topical focus of the response. iv) Clarity: Structural 

organization and ease of understanding. Scoring criteria were detailed in 

(Supplementary Table S3). Following independent evaluations, the two 

assessors resolved scoring discrepancies through discussion and reached 

a consensus score for each response. The overall study workflow was 

illustrated in (Figure 1). 

 

Statistical analysis was conducted using Python (version 3.10.12, Python 

Software Foundation, Wilmington, DE, USA). Descriptive statistics 

included measures of central tendency (mean, median) and dispersion 

(interquartile range [IQR], standard deviation [SD], and coefficient of 

variation [CV]). Inter-rater reliability was assessed using Pearson’s 

correlation coefficient (r) and the intraclass correlation coefficient (ICC). 
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Given the limited sample size per module, statistical comparisons 

focused on total scores across the complete question set. Inter-model 

performance differences were analyzed using the Kruskal-Wallis test 

followed by Dunn’s post hoc test. A two-sided P value of < 0.05 was 

considered statistically significant. 

 

3. Results 

 

Between February 15, 2025, and March 5, 2025, five models- Grok 3 

(Think), Deepseek-R1, ChatGPT-4o, Gemini 2.0 Flash, and ChatGPT-

4- were evaluated across clinical tasks. The workflow for this 

comparative evaluation of LLMs and LRMs is illustrated in (Figure 1). 

The inter-evaluator reliability of the scoring between the two radiation 

oncologists across all five models was presented in (Figure 2). A 

statistically significant correlation was observed, with a Pearson 

correlation coefficient (r) of 0.732 (P < 0.001), indicating consistent 

application of the scoring rubric. This finding was further supported by 

an intraclass correlation coefficient (ICC) of 0.733, confirming good 

agreement between evaluators. Following independent assessments and 

reliability validation, consensus-derived scores were established for all 

model responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Workflow for comparative evaluation of LLMs and LRMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A scatter plot of scores with the regression line and frequency-weighted point size. 

This scatter plot depicts the correlation between the two evaluators, where point size is determined by frequency-weighted size. A linear regression line 

(red) is overlaid with the shaded region representing the 95% confidence interval. 
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Table 1 presented the descriptive statistics of the finalized scores. The 

median aggregated score across all models was 17 (interquartile range 

[IQR]: 14-18). Among the five evaluated models, Grok 3 (Think) 

achieved the highest mean score (17.44 ± 1.74), followed by Deepseek-

R1, ChatGPT-4o, Gemini 2.0 Flash, and ChatGPT-4. The coefficient of 

variation (CV) revealed that Grok 3 (9.98%) and Deepseek-R1 (13.98%) 

demonstrated more stable performance. Among the LLMs, ChatGPT-4o 

recorded the highest mean score (15.54 ± 3.69); however, its higher CV 

(23.77%) indicated notable performance variability. The Kruskal-Wallis 

test revealed a statistically significant difference in overall performance 

among the models (P < 0.001). Post hoc pairwise comparisons using 

Dunn’s test showed that Grok 3 (Think) significantly outperformed 

ChatGPT-4 (P < 0.001) and Gemini 2.0 Flash (P < 0.001). Deepseek-R1 

similarly outperformed ChatGPT-4 (P < 0.001) and Gemini 2.0 Flash (P 

< 0.01). A marginally significant difference was observed between 

ChatGPT-4o and ChatGPT-4 (P = 0.047). No other pairwise 

comparisons yielded statistically significant differences. Statistically 

significant comparisons were illustrated in (Figure 3), and the complete 

pairwise matrix was provided in (Supplementary Table S4). Responses 

were categorized as inferior (score ≤ 14), moderate (score 15-17), and 

superior (score ≥ 18), based on the IQR of aggregated scores. A module-

specific breakdown of score distributions (Figure 4) revealed notable 

differences in model performance. The two LRMs, Grok 3 (Think) and 

Deepseek-R1, consistently delivered a higher proportion of superior 

responses across all modules. Grok 3 (Think) achieved the highest 

percentage of superior responses in the workup & follow-up (60%) and 

radiotherapy (70%) modules, with no inferior responses recorded in 

workup & follow-up, staging, or multidisciplinary treatment. Deepseek-

R1 demonstrated exceptional performance in staging (80% superior) and 

solid performance in radiotherapy (40% superior), surpassing all LLMs. 

 

Table. 1. Descriptive statistics for the final scores to the answers provided by the 5 models. 

 ChatGPT-4 ChatGPT-4o Gemini 2.0 Flash Deepseek-R1 
Gork 3 

(Think) 

Aggregated 

score 

Minimum 4 5 5 9 13 4 

Median 

(Interquartile 

range) 

15 (12-16) 17 (13-18) 15 (13-17) 17 (16-18) 18 (16-19) 17 (14-18) 

Maximum 19 20 20 20 20 20 

Mean (SD) 14.04 (3.44) 15.54 (3.69) 14.62 (3.57) 16.76 (2.34) 17.44 (1.74) 15.68 (3.29) 

Coefficient of 

Variance 
24.50% 23.77% 24.40% 13.98% 9.98% 20.98% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Violin plot illustrating the score distributions of different models. 

Statistical significance between models was determined using Dunn’s post hoc with significance levels indicated as follows: *** (p<0.001), ** (p<0.01), 

and * (p＜0.05). 
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Fig. 4. Overall and module-specific score distributions for each model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Spot matrix of the percentages of different evaluation aspects. Color volume is directly proportional to percentage with the outer black circle 

representing 100%. 
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In contrast, ChatGPT4 produced limited high-quality responses, with 

0%-10% superior ratings in multidisciplinary treatment and staging. 

ChatGPT-4o showed moderate improvement, achieving 60% superior 

responses in workup & follow-up, but exhibited considerable 

performance volatility, with 40%-50% inferior responses in staging and 

radiotherapy. Across all models, toxicity management was the most 

challenging domain, no model exceeded 50% superior ratings, 

highlighting a shared limitation in handling this topic. A 

multidimensional evaluation across four criteria, accuracy, relevance, 

comprehensiveness, and clarity, was presented in (Figure 5). Grok 3 

(Think) excelled in accuracy (84.0%) and relevance (91.6%), 

significantly outperforming ChatGPT-4 (P < 0.001 for accuracy; P = 

0.003 for relevance) and Gemini 2.0 Flash (P = 0.002 for accuracy; P = 

0.10 for relevance). It also achieved the highest clarity score (90.4%), 

although inter-model differences in clarity were not statistically 

significant (P = 0.12). 

 

Deepseek-R1 scored highest in comprehensiveness (83.2%), 

significantly outperforming ChatGPT-4 (P = 0.02) and Gemini 2.0 Flash 

(P < 0.001), while also maintaining high clarity (89.6%) and strong 

relevance (85.6%). Conversely, Gemini 2.0 Flash demonstrated a trade-

off: while it achieved reasonable accuracy (76.4%), its 

comprehensiveness (62.8%) was significantly lower than that of the 

LRMs (P < 0.05), reflecting limitations in depth of elaboration despite 

factual correctness. ChatGPT-4o outperformed ChatGPT-4 across all 

evaluated dimensions but remained statistically inferior to Grok 3 

(Think) in terms of accuracy (P < 0.001). Overall, Grok 3 (Think) 

emerged as the most balanced and consistently high-performing model, 

distinguished by its ability to generate accurate, contextually relevant, 

and well-articulated clinical responses. 

 

4. Discussion 

 

In the clinical management of radiation oncology, physicians frequently 

encounter complex scenarios shaped by numerous individual and 

contextual factors. Informed decision-making requires not only deep 

medical expertise, which is continuously evolving with new therapies 

and clinical trial data, but also the ability to assess nuanced trade-offs 

between risks and benefits. While large language models have 

demonstrated promising performance in medical examinations [15, 16], 

these assessments, typically based on multiple-choice formats with 

definitive answers, fail to fully capture the uncertainty and complexity 

inherent in real-world clinical practice [17]. Moreover, reliance on 

publicly available training data introduces the risk of data contamination, 

potentially inflating perceived model performance. To address these 

issues, the present study employed a novel set of open-ended clinical 

management questions that closely mimic real-world scenarios where 

radiation oncologists might seek AI-based support, with a multi-

dimensional scoring system for comprehensive performance evaluation. 

 

ChatGPT-4 was among the most extensively studied generative AI 

models in radiation oncology. Huang et al. [18] noted its capacity to 

generate personalized treatment plans, occasionally offering novel 

insights not previously considered by clinicians. However, its tendency 

to produce "hallucinations" necessitates caution. Similarly, Ramadan et 

al. [7] found that ChatGPT-4 performed well in factual recall but 

struggles with higher-order clinical decision-making, particularly in 

areas, such as toxicity management and treatment planning, limitations 

likely stemming from its restricted reasoning capabilities. 

 

Our findings corroborated these limitations. In the Staging module, 

ChatGPT-4 repeatedly misdefined TNM classifications under the AJCC 

8th edition, such as incorrectly describing N1 as a "single ipsilateral 

lymph node, 3 cm or less." In the multidisciplinary treatment module, it 

inappropriately recommended induction chemotherapy for early-stage 

NPC and mischaracterized TP and PF regimens as standard induction 

protocols. While GPT-4o showed marginal improvement over GPT-4 (P 

= 0.047), similar inaccuracies persisted. Gemini 2.0 Flash performed 

comparably to GPT-4 (P = 1.00) but frequently offered vague or evasive 

answers. For instance, it declined to provide direct responses to two 

radiotherapy-related questions, consistent with earlier findings [19]. 

Echoing previous analogies, ChatGPT resembled an enthusiastic but 

inexperienced trainee [20], while Gemini presented as a more cautious 

counterpart. Notably, 87.0% of inferior responses in this study originated 

from LLMs, and their higher coefficient of variation (23.77%-24.50%) 

suggested inconsistency, making them less reliable in time-sensitive 

clinical settings lacking expert oversight. 

 

The advent of large reasoning models showed a paradigm shift in AI 

development, comparable in impact to the original emergence of 

ChatGPT [21]. By embedding advanced reasoning mechanisms into 

LLM architectures, LRMs enable stepwise, context-aware deliberation 

that better reflected human cognitive processing. In oncology, this 

allowed for improved judgment in ambiguous or high-stakes scenarios. 

Our results confirmed that Grok 3 (Think) significantly outperformed 

other models, particularly in radiotherapy and multidisciplinary 

treatment modules, domains that require probabilistic reasoning and 

real-time trade-off analysis. Moreover, LRMs demonstrated more 

consistent performance, with lower coefficients of variation (Grok 3: 

9.98%; Deepseek-R1: 13.98%). 

 

Nevertheless, LRMs were not immune to hallucinations [22]. For 

example, Grok 3 (Think) inaccurately recommended bevacizumab for 

NPC with liver metastases, contrary to NCCN guidelines. Deepseek-R1 

fabricated definitions for radiotherapy target volumes and frequently 

cited nonexistent journal articles, issues also reported in other GenAI 

models [23]. These errors highlighted the need for vigilant oversight, 

particularly when users lack the expertise to critically assess AI-

generated content. Another pervasive limitation across all models was 

their outdated knowledge. In the staging module, responses reflected the 

AJCC 8th edition, despite the release of the 9th edition in September 

2024 [24]. Similarly, none of the models referenced a key study on GTV 

delineation published in February 2025 [25]. Because most current 

models rely on static, pre-trained data rather than real-time information 

retrieval, they are inherently disadvantaged in fast-evolving clinical 

fields like radiation oncology. Performance in the toxicity and 

multidisciplinary treatment modules was also suboptimal. No model 

achieved more than 50% superior responses in either area, suggesting 

limitations in reasoning depth or gaps in domain-specific training data. 
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These shortcomings underscored the need for domain-adapted model 

development. 

 

Radiation oncology’s complexity and specialized knowledge base call 

for tailored AI solutions. Incorporating structured clinical records, up-

to-date guidelines, standardized terminology, and scientific literature 

into training datasets could significantly improve GenAI performance in 

this field [26-28]. Equally important was the ability to trace evidence. In 

clinical practice, treatment decisions were often based on high-level 

evidence, and transparent citation of such sources could enhance 

clinicians’ confidence in AI recommendations. Recent efforts, such as 

retrieval-augmented generation [29] and domain-specific knowledge 

graphs [30], aimed to improve evidence traceability. Addressing 

hallucinations remained a priority, with promising developments 

including hallucination detectors for automatic error identification and 

correction [31, 32]. Further exploration of hallucination patterns specific 

to radiation oncology was warranted. 

 

To our knowledge, this is the first systematic comparison of LLMs and 

LRMs in addressing open-ended clinical questions related to 

nasopharyngeal carcinoma. Key strengths of this study include a 

rigorously designed, 50-question, expert-curated evaluation set and a 

validated multi-dimensional scoring framework. Findings indicate that 

LRMs offer clear advantages in clinical reasoning, reliability, and 

performance consistency, supporting their potential integration into 

radiation oncology workflows. The limitations of this study included the 

use of single-session queries, which might not reflect the iterative, 

interactive nature of clinical consultations or account for response 

variability inherent to GenAI models. Additionally, the sample size, 

limited to 10 questions per module, restricted detailed subdomain 

analyses. Finally, the study did not include medical imaging inputs, 

despite their essential role in diagnosis and treatment planning in 

radiation oncology. 

 

5. Conclusion 

 

In this study, large reasoning models such as Grok 3 (Think) and 

Deepseek-R1 outperformed traditional large language models in 

addressing complex, open-ended clinical scenarios related to 

nasopharyngeal carcinoma. However, persistent limitations, including 

outdated knowledge, hallucinations, and limited evidence traceability, 

underscored the need for further refinement. With targeted training using 

domain-specific data, improved evidence citation mechanisms, and 

hallucination mitigation strategies, reasoning-enhanced GenAI has the 

potential to become a reliable clinical decision-support tool in radiation 

oncology. Future research will expand to include larger question sets, 

additional cancer types, multimodal data (e.g., imaging), and multi-turn 

dialogue to further validate and optimize the clinical utility of these 

advanced AI systems. 
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