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ARTICLEINFO ABSTRACT

Keywords: Purpose: This study aimed to comparatively evaluate the performance of large language models (LLMs)
Large reasoning models and large reasoning models (LRMs) in addressing clinical management challenges associated with
large language models nasopharyngeal carcinoma (NPC), a complex domain within radiation oncology.

nasopharyngeal carcinoma Methods: Five Al models, three LLMs (GPT-4, GPT-40, and Gemini 2.0 Flash) and two LRMs [Deepseek-
radiation oncology R1 and Grok 3 (Think)], were assessed using a custom-designed set of 50 open-ended questions spanning
clinical decision support five key modules of NPC management. Responses were independently scored by two radiation oncologists
artificial intelligence in a single-blinded manner using a standardized rubric. Statistical analyses were conducted to compare
comparative evaluation model performance.

Results: The LRMs achieved higher mean scores (range: 16.66-17.44) than the LLMs (range: 14.04-15.54).
Overall, Grok 3 (Think) and Deepseek-R1 significantly outperformed ChatGPT-4 and Gemini 2.0 Flash,
while GPT-40 demonstrated superior performance compared to ChatGPT-4 (P = 0.047). Module-specific
analyses revealed that Grok 3 (Think) and Deepseek-R1 consistently outperformed others, particularly in
complex domains such as multidisciplinary treatment and radiotherapy. In multidimensional assessment,
Grok 3 (Think) achieved the highest accuracy (84.0%) and relevance (91.6%), whereas Deepseek-R1
excelled in comprehensiveness (83.2%). Nonetheless, all models exhibited notable limitations, including
outdated content, hallucinations, and inadequate source attribution.

Conclusion: LRMs demonstrate superior performance compared to LLMs in addressing open-ended
clinical questions related to NPC management and hold substantial promise for clinical decision support in
radiation oncology. However, rigorous validation and cautious interpretation of Al-generated content
remain essential to ensure reliability in clinical practice.

Highlights ii) A set of open-ended clinical questions specific to nasopharyngeal
carcinoma was developed, offering a focused framework to assess Al

i) The advent of large reasoning models (LRMs) has markedly enhanced performance in radiation oncology.

the capabilities of generative Al in supporting complex clinical decision- iii) LRMs, particularly Grok 3 (Think), consistently outperformed

making. conventional large language models (LLMs), demonstrating higher

mean scores and improved reliability in clinical decision support.
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iv) Despite their promise, LRMs remain susceptible to hallucination
errors, emphasizing the critical need for comprehensive validation
before clinical implementation.

1. Introduction

Large language models (LLMs) have emerged as a transformative force
in generative artificial intelligence (GenAl), enabling machines to
understand and generate human-like text with remarkable accuracy and
fluency [1, 2]. Among these, ChatGPT4 has become one of the most
extensively studied models in the medical domain. Research has
demonstrated its potential as a supplementary tool to enhance diagnostic
accuracy, streamline data collection, improve patient communication,
and support clinical decision-making [3-5]. A landmark randomized
controlled trial further validated its utility, showing that ChatGPT4
significantly improved physicians’ clinical decisions in complex
scenarios compared to conventional online resources [6]. While
ChatGPT4 excels at processing objective data, its performance remains
constrained in situations involving subjective interpretation or nuanced
clinical judgment [7].

The latest generation of LLMs, including GPT-4o, has introduced even
greater capabilities and efficiency, surpassing its predecessor in both
reasoning depth and speed [8]. Similarly, Google’s Gemini 2.0 Flash has
demonstrated notable advancements over its earlier version, Google
Bard [9]. These developments suggest an expanding role for GenAl in
clinical workflows. Parallel to these improvements, a new class of Al
systems, large reasoning models (LRMs) such as DeepSeek-R1 [10] and
Grok 3 (Think) [11], has emerged. Built upon LLM foundations, LRMs
incorporate sophisticated reasoning frameworks that allow for stepwise
deliberation, mimicking human cognitive processes more closely than
traditional LLMs [12, 13]. Despite their promising design, the real-world
clinical utility of LRMs, especially in complex, high-stakes medical
settings, remains largely untested.

Nasopharyngeal carcinoma (NPC) presents an ideal clinical context for
evaluating Al-driven decision support systems in radiation oncology.
Effective NPC management demands the integration of diverse clinical
tasks: accurate diagnostic staging, individualized radiotherapy planning,
complication mitigation, and coordination across multidisciplinary
teams [14]. These tasks require not only factual medical knowledge but
also probabilistic reasoning, risk-benefit assessments, and interpretation
of evolving clinical guidelines, making NPC a robust test case for Al
capabilities.

Despite growing interest in LLMs within healthcare, direct comparisons
between LLMs and LRMs remain limited, particularly in open-ended
clinical scenarios that demand sophisticated reasoning. Addressing this
gap, our study systematically evaluates the performance of leading
LLMs and LRMs in responding to open-ended clinical management
questions specific to NPC. The question set, developed by senior
radiation oncology experts, was designed to reflect real-world
complexity and decision-making demands, while focusing on a single
tumor type to ensure depth of evaluation. Moreover, the use of newly
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constructed questions minimized the risk of dataset contamination from
model training data.

By assessing how well these models handle complex clinical reasoning,
formulate evidence-based treatment strategies, and offer contextually
relevant recommendations, this study aims to clarify their respective
strengths and limitations. Ultimately, the findings may inform strategies
for optimizing Al integration into clinical workflows in radiation
oncology, supporting more informed, consistent, and high-quality care.

2. Methods

This study compared the performance of three large language models
(LLMs), GPT-4, GPT-40, and Gemini 2.0 Flash, with two large
reasoning models (LRMs), Deepseek-R1 and Grok 3 (Think). GPT-4
and GPT-4o, both developed by OpenAl, require a “ChatGPT Plus”
subscription for unrestricted access. Gemini 2.0 Flash, developed by
Google, is freely available to the public. Deepseek-R1, developed by
DeepSeek, is an openly accessible LRM. Grok 3 (Think), part of the
Grok model series from xAl, was also publicly available, though full
access to advanced features requires an “X Premium+" subscription.

A question set was developed based on the clinical expertise of four
board-certified radiation oncologists from academic medical centers, all
of whom were attending physicians specializing in head and neck
cancers. This set included 50 open-ended questions, evenly distributed
across five clinical modules relevant to nasopharyngeal carcinoma
(NPC): i) workup & follow-up, ii) staging, iii) radiotherapy, iv)
multidisciplinary treatment, and v) toxicity (Supplementary Table S1).
Each question was formulated in scientific language using appropriate
clinical terminology. Each of the five Al models was tested using the full
question set. Questions were manually submitted to each model in a
single, uninterrupted session between February 15, 2025, and March 5,
2025. No additional context, emphasis, or follow-up prompts were
provided. All responses were collected and archived (Supplementary
Table S2). Responses from each model were independently evaluated by
two senior radiation oncologists, each with over 15 years of clinical
experience. The evaluators were blinded to the identity of the Al model.
Scoring was conducted on a standardized 0-20 scale based on four
criteria: i) Comprehensiveness: Degree to which the response addressed
all aspects of the question. ii) Accuracy: Alignment of the content with
current clinical standards and expert knowledge. iii) Relevance:
Appropriateness and topical focus of the response. iv) Clarity: Structural
organization and ease of understanding. Scoring criteria were detailed in
(Supplementary Table S3). Following independent evaluations, the two
assessors resolved scoring discrepancies through discussion and reached
a consensus score for each response. The overall study workflow was
illustrated in (Figure 1).

Statistical analysis was conducted using Python (version 3.10.12, Python
Software Foundation, Wilmington, DE, USA). Descriptive statistics
included measures of central tendency (mean, median) and dispersion
(interquartile range [IQR], standard deviation [SD], and coefficient of
variation [CV]). Inter-rater reliability was assessed using Pearson’s
correlation coefficient (r) and the intraclass correlation coefficient (ICC).
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Given the limited sample size per module, statistical comparisons
focused on total scores across the complete question set. Inter-model
performance differences were analyzed using the Kruskal-Wallis test
followed by Dunn’s post hoc test. A two-sided P value of < 0.05 was
considered statistically significant.

3. Results

Between February 15, 2025, and March 5, 2025, five models- Grok 3
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comparative evaluation of LLMs and LRMs is illustrated in (Figure 1).
The inter-evaluator reliability of the scoring between the two radiation
oncologists across all five models was presented in (Figure 2). A
statistically significant correlation was observed, with a Pearson
correlation coefficient (r) of 0.732 (P < 0.001), indicating consistent
application of the scoring rubric. This finding was further supported by
an intraclass correlation coefficient (ICC) of 0.733, confirming good
agreement between evaluators. Following independent assessments and
reliability validation, consensus-derived scores were established for all

(Think), Deepseek-R1, ChatGPT-40, Gemini 2.0 Flash, and ChatGPT-
4- were evaluated across clinical tasks. The workflow for this

model responses.
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Fig. 2. A scatter plot of scores with the regression line and frequency-weighted point size.

This scatter plot depicts the correlation between the two evaluators, where point size is determined by frequency-weighted size. A linear regression line

(red) is overlaid with the shaded region representing the 95% confidence interval.
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Table 1 presented the descriptive statistics of the finalized scores. The
median aggregated score across all models was 17 (interquartile range
[IQR]: 14-18). Among the five evaluated models, Grok 3 (Think)
achieved the highest mean score (17.44 + 1.74), followed by Deepseek-
R1, ChatGPT-40, Gemini 2.0 Flash, and ChatGPT-4. The coefficient of
variation (CV) revealed that Grok 3 (9.98%) and Deepseek-R1 (13.98%)
demonstrated more stable performance. Among the LLMs, ChatGPT-40
recorded the highest mean score (15.54 + 3.69); however, its higher CV
(23.77%) indicated notable performance variability. The Kruskal-Wallis
test revealed a statistically significant difference in overall performance
among the models (P < 0.001). Post hoc pairwise comparisons using
Dunn’s test showed that Grok 3 (Think) significantly outperformed
ChatGPT-4 (P < 0.001) and Gemini 2.0 Flash (P <0.001). Deepseek-R1
similarly outperformed ChatGPT-4 (P < 0.001) and Gemini 2.0 Flash (P
< 0.01). A marginally significant difference was observed between
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ChatGPT-40 and ChatGPT-4 (P = 0.047). No other pairwise
comparisons Yyielded statistically significant differences. Statistically
significant comparisons were illustrated in (Figure 3), and the complete
pairwise matrix was provided in (Supplementary Table S4). Responses
were categorized as inferior (score < 14), moderate (score 15-17), and
superior (score > 18), based on the IQR of aggregated scores. A module-
specific breakdown of score distributions (Figure 4) revealed notable
differences in model performance. The two LRMs, Grok 3 (Think) and
Deepseek-R1, consistently delivered a higher proportion of superior
responses across all modules. Grok 3 (Think) achieved the highest
percentage of superior responses in the workup & follow-up (60%) and
radiotherapy (70%) modules, with no inferior responses recorded in
workup & follow-up, staging, or multidisciplinary treatment. Deepseek-
R1 demonstrated exceptional performance in staging (80% superior) and
solid performance in radiotherapy (40% superior), surpassing all LLMs.

Table. 1. Descriptive statistics for the final scores to the answers provided by the 5 models.

. Gork 3 Aggregated
ChatGPT-4 ChatGPT-40 Gemini 2.0 Flash Deepseek-R1 .
(Think) score
Minimum 4 5 5 9 13 4
Median
(Interquartile 15 (12-16) 17 (13-18) 15 (13-17) 17 (16-18) 18 (16-19) 17 (14-18)
range)
Maximum 19 20 20 20 20 20
Mean (SD) 14.04 (3.44) 1554 (3.69) 14.62 (3.57) 16.76 (2.34) 17.44 (1.74) 15.68 (3.29)
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Fig. 3. Violin plot illustrating the score distributions of different models.
Statistical significance between models was determined using Dunn’s post hoc with significance levels indicated as follows: *** (p<0.001), ** (p<0.01),

and * (p<<0.05).
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In contrast, ChatGPT4 produced limited high-quality responses, with
0%-10% superior ratings in multidisciplinary treatment and staging.
ChatGPT-40 showed moderate improvement, achieving 60% superior
responses in workup & follow-up, but exhibited considerable
performance volatility, with 40%-50% inferior responses in staging and
radiotherapy. Across all models, toxicity management was the most
challenging domain, no model exceeded 50% superior ratings,
highlighting a shared limitation in handling this topic. A
multidimensional evaluation across four criteria, accuracy, relevance,
comprehensiveness, and clarity, was presented in (Figure 5). Grok 3
(Think) excelled in accuracy (84.0%) and relevance (91.6%),
significantly outperforming ChatGPT-4 (P < 0.001 for accuracy; P =
0.003 for relevance) and Gemini 2.0 Flash (P = 0.002 for accuracy; P =
0.10 for relevance). It also achieved the highest clarity score (90.4%),
although inter-model differences in clarity were not statistically
significant (P = 0.12).

Deepseek-R1  scored highest in comprehensiveness (83.2%),
significantly outperforming ChatGPT-4 (P =0.02) and Gemini 2.0 Flash
(P < 0.001), while also maintaining high clarity (89.6%) and strong
relevance (85.6%). Conversely, Gemini 2.0 Flash demonstrated a trade-
off: while it achieved reasonable accuracy (76.4%), its
comprehensiveness (62.8%) was significantly lower than that of the
LRMs (P < 0.05), reflecting limitations in depth of elaboration despite
factual correctness. ChatGPT-40 outperformed ChatGPT-4 across all
evaluated dimensions but remained statistically inferior to Grok 3
(Think) in terms of accuracy (P < 0.001). Overall, Grok 3 (Think)
emerged as the most balanced and consistently high-performing model,
distinguished by its ability to generate accurate, contextually relevant,
and well-articulated clinical responses.

4. Discussion

In the clinical management of radiation oncology, physicians frequently
encounter complex scenarios shaped by numerous individual and
contextual factors. Informed decision-making requires not only deep
medical expertise, which is continuously evolving with new therapies
and clinical trial data, but also the ability to assess nuanced trade-offs
between risks and benefits. While large language models have
demonstrated promising performance in medical examinations [15, 16],
these assessments, typically based on multiple-choice formats with
definitive answers, fail to fully capture the uncertainty and complexity
inherent in real-world clinical practice [17]. Moreover, reliance on
publicly available training data introduces the risk of data contamination,
potentially inflating perceived model performance. To address these
issues, the present study employed a novel set of open-ended clinical
management questions that closely mimic real-world scenarios where
radiation oncologists might seek Al-based support, with a multi-
dimensional scoring system for comprehensive performance evaluation.

ChatGPT-4 was among the most extensively studied generative Al
models in radiation oncology. Huang et al. [18] noted its capacity to
generate personalized treatment plans, occasionally offering novel
insights not previously considered by clinicians. However, its tendency
to produce "hallucinations™ necessitates caution. Similarly, Ramadan et
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al. [7] found that ChatGPT-4 performed well in factual recall but
struggles with higher-order clinical decision-making, particularly in
areas, such as toxicity management and treatment planning, limitations
likely stemming from its restricted reasoning capabilities.

Our findings corroborated these limitations. In the Staging module,
ChatGPT-4 repeatedly misdefined TNM classifications under the AJCC
8th edition, such as incorrectly describing N1 as a "single ipsilateral
lymph node, 3 cm or less." In the multidisciplinary treatment module, it
inappropriately recommended induction chemotherapy for early-stage
NPC and mischaracterized TP and PF regimens as standard induction
protocols. While GPT-40 showed marginal improvement over GPT-4 (P
= 0.047), similar inaccuracies persisted. Gemini 2.0 Flash performed
comparably to GPT-4 (P =1.00) but frequently offered vague or evasive
answers. For instance, it declined to provide direct responses to two
radiotherapy-related questions, consistent with earlier findings [19].
Echoing previous analogies, ChatGPT resembled an enthusiastic but
inexperienced trainee [20], while Gemini presented as a more cautious
counterpart. Notably, 87.0% of inferior responses in this study originated
from LLMs, and their higher coefficient of variation (23.77%-24.50%)
suggested inconsistency, making them less reliable in time-sensitive
clinical settings lacking expert oversight.

The advent of large reasoning models showed a paradigm shift in Al
development, comparable in impact to the original emergence of
ChatGPT [21]. By embedding advanced reasoning mechanisms into
LLM architectures, LRMs enable stepwise, context-aware deliberation
that better reflected human cognitive processing. In oncology, this
allowed for improved judgment in ambiguous or high-stakes scenarios.
Our results confirmed that Grok 3 (Think) significantly outperformed
other models, particularly in radiotherapy and multidisciplinary
treatment modules, domains that require probabilistic reasoning and
real-time trade-off analysis. Moreover, LRMs demonstrated more
consistent performance, with lower coefficients of variation (Grok 3:
9.98%; Deepseek-R1: 13.98%).

Nevertheless, LRMs were not immune to hallucinations [22]. For
example, Grok 3 (Think) inaccurately recommended bevacizumab for
NPC with liver metastases, contrary to NCCN guidelines. Deepseek-R1
fabricated definitions for radiotherapy target volumes and frequently
cited nonexistent journal articles, issues also reported in other GenAl
models [23]. These errors highlighted the need for vigilant oversight,
particularly when users lack the expertise to critically assess Al-
generated content. Another pervasive limitation across all models was
their outdated knowledge. In the staging module, responses reflected the
AJCC 8th edition, despite the release of the 9th edition in September
2024 [24]. Similarly, none of the models referenced a key study on GTV
delineation published in February 2025 [25]. Because most current
models rely on static, pre-trained data rather than real-time information
retrieval, they are inherently disadvantaged in fast-evolving clinical
fields like radiation oncology. Performance in the toxicity and
multidisciplinary treatment modules was also suboptimal. No model
achieved more than 50% superior responses in either area, suggesting
limitations in reasoning depth or gaps in domain-specific training data.
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These shortcomings underscored the need for domain-adapted model
development.

Radiation oncology’s complexity and specialized knowledge base call
for tailored Al solutions. Incorporating structured clinical records, up-
to-date guidelines, standardized terminology, and scientific literature
into training datasets could significantly improve GenAl performance in
this field [26-28]. Equally important was the ability to trace evidence. In
clinical practice, treatment decisions were often based on high-level
evidence, and transparent citation of such sources could enhance
clinicians’ confidence in Al recommendations. Recent efforts, such as
retrieval-augmented generation [29] and domain-specific knowledge
graphs [30], aimed to improve evidence traceability. Addressing
hallucinations remained a priority, with promising developments
including hallucination detectors for automatic error identification and
correction [31, 32]. Further exploration of hallucination patterns specific
to radiation oncology was warranted.

To our knowledge, this is the first systematic comparison of LLMs and
LRMs in addressing open-ended clinical questions related to
nasopharyngeal carcinoma. Key strengths of this study include a
rigorously designed, 50-question, expert-curated evaluation set and a
validated multi-dimensional scoring framework. Findings indicate that
LRMs offer clear advantages in clinical reasoning, reliability, and
performance consistency, supporting their potential integration into
radiation oncology workflows. The limitations of this study included the
use of single-session queries, which might not reflect the iterative,
interactive nature of clinical consultations or account for response
variability inherent to GenAl models. Additionally, the sample size,
limited to 10 questions per module, restricted detailed subdomain
analyses. Finally, the study did not include medical imaging inputs,
despite their essential role in diagnosis and treatment planning in
radiation oncology.

5. Conclusion

In this study, large reasoning models such as Grok 3 (Think) and
Deepseek-R1 outperformed traditional large language models in
addressing complex, open-ended clinical scenarios related to
nasopharyngeal carcinoma. However, persistent limitations, including
outdated knowledge, hallucinations, and limited evidence traceability,
underscored the need for further refinement. With targeted training using
domain-specific data, improved evidence citation mechanisms, and
hallucination mitigation strategies, reasoning-enhanced GenAl has the
potential to become a reliable clinical decision-support tool in radiation
oncology. Future research will expand to include larger question sets,
additional cancer types, multimodal data (e.g., imaging), and multi-turn
dialogue to further validate and optimize the clinical utility of these
advanced Al systems.

Data Sharing
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