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A B S T R A C T 

Background: The great value concealed in the sequence of coronary angiography frames for diagnosis is 

not discovered in the world. Current approaches for auto-diagnosis are frame-based.  

Objectives: We aimed to demonstrate the “Sequence Value” concealed in the coronary angiography and 

answer how to realize the sequence value using an unsupervised language model to indicate CABG.  

Methods: We first applied the theory of CMT ad ATOM to develop the theory of our proposed unsupervised 

language model. Then we designed an experiment to demonstrate the effectiveness of sequence value 

(sequence recovery capability) to indicate coronary artery lesions. Last, we developed an unsupervised 

language model to take use of the sequence value and indicate CABG.  

Results: For the experiment, the AUC of SYNTAX>0 reaches 92 from physicians. For the unsupervised 

language model DZL, the average AUC of CABG indicator (SYNTAX>=23) reaches 80.08 for the five-

folder validation. The model (DZL) is based on the unsupervised language model. It could be completed 

within 30 seconds and is robust to static data noise.  

Conclusion: We discovered and demonstrated the “Sequence Value” concealed in coronary angiography 

video. It could be used as an indicator to CABG. We creatively developed an unsupervised language model 

to indicate CABG by taking use of the “Sequence Value” in an efficient and robust manner. 

1. Introduction 

 

Coronary angiography exhibits in a video form, consisting of several 

images in a predefined sequence. In terms of automatic diagnosis studies 

focusing on coronary angiography, seems there is yet no trend to make 

diagnosis based on the whole video. Instead, existing researches get used 

to “quote out of the context”: the auto-diagnosis is made condition on 

separate image selected from the video [1-4]. However, the ignorance of 

the information concealed in the whole video has shown its 

disadvantages, disability and out of style especially when we are 

standing on the milestone of AI and its famous descendant: large 

language model [5]. It is the AI era never as emphasizing context and 

sequence as before. We termed the logic behind these models as “given 

context what’s next”. Back to coronary angiography, whether we could 

transplant such concept by interpreting each image to a language unit 

and many images to a whole sentence? Also whether such video 

“sentence” conveyed affluent diagnosis information? It’s like “given 

video what’s wrong” logic. Our study aimed to answer these two 

questions.  
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A video is vividly releasing us some information as a sentence conveying 

messages ready to be interpreted by human. In such perspective, it is 

never wise to tell from a word instead of a sentence. To the best of our 

knowledge, auto-diagnosis studies haven’t embarked on this new chapter 

yet. Some diagnoses take use of morphology [1]. Some diagnoses are 

based on expert system [2]. Some diagnoses apply operation research 

algorithm [3] and some diagnoses enter the AI high speed road [4]. All 

these works require a good qualified frame be selected from the video 

and thus is frame-based. Here we used a language model to handle 

coronary angiography video-based diagnosis and achieved pronounced 

results.  

 

The encoder decoder sequential model [6, 7] is usually used in nature 

language processing. Here we creatively applied it using coronary 

angiography as the input. The idea is reasonable in 3 folds. First, video 

is a kind of sequential information consisting of the image as atom. If a 

sentence is constituted by words, then a video is constituted by images. 

Second, the hidden size of the language model is usually determined by 

the word embedding dimensions. While for image, its various pixels 

become the corresponding extra dimension. We set the hidden size of 

our model as 5000 to be parallelly processed. We inferred in section 4.3 

that the larger the hidden size was, the better the performance we got. 

The paralleled capability of our model depends on the GPU quantity and 

memory. Third, the information each image conveys are not 

independent, they are mutual related [8]. Given the previous images 

could gain the probability to predict next image. Such intrinsic logic is 

quite similar to build a language model. The above reasons root in our 

model specifications and lay a foundation for the effectiveness of the 

model to make diagnosis.  

 

2. Methods 

2.1. Theoretical Background 

 

Coronary angiography (CAG) is exhibited in a form of videos, which 

record the dynamic process of contrast agent flowing in the blood vessel. 

The part that is unable to be developed by contrast agent is the location 

of suspected lesions [9, 10]. The opacification process, in a human visual 

perspective, is a temporal and spatial integrative movement. The 

antegrade contrast material moves forward within a specified time 

window. The spatial movement alone is not sufficient to represent since 

the antegrade contrast material should enter or clear (or both) with 

predefined speed [7]. There are two branches of theoretical arguments in 

terms of how human brains process temporal and spatial information: 

CMT (conceptual metaphor theory) vs. ATOM (a theory of magnitudes). 

CMT is proposed by Lakoff and Johnson [11] which assumes that the 

neural system characterizing concrete sensorimotor experience has more 

inferential connections and therefore a greater inferential capacity than 

the neural system characterizing abstract thoughts [12]. The abstract 

expression of time is thus dominated by the concrete expression of space, 

forming an asymmetric hypothesis. Time can be expressed by space 

more than space expressed by time [13].  

 

The ATOM is proposed by Walsh [14] proposing hypothesis that time 

and space information are processed physically activating the 

overlapped area of the brain (parietal cortex), which indicates that there 

exists a unified magnitude for humans to process information in these 

two separating domains. Thus, ATOM is featured as the symmetric 

hypothesis, temporal and spatial information weight equally and can be 

exchangeable as the processing output signal to activate further action 

[14]. Whichever theory we choose to build on, it supports the argument 

that time can be represented by space. This is the foundation rooted on 

our novel method to measure temporal and spatial coupling tightness 

(TSCT). For videos with high temporal and spatial coupled tightness, if 

we shuffle the time factor, it will thus rearrange the antegrade contrast 

agent spatially. The disordered time will cause spatial incoherency of 

opacification process and such incoherency, if reaches some extent, is 

possible to be observed by humans visually.  

 

On the contrary, if the shuffled time brings no obvious spatial 

incoherency, and humans are not able to distinguish the shuffled frames, 

let alone to recover the sequence. Hence the sequence recovery 

capability of the shuffled frames could be an indicator of the coupling 

extent between time and space. As the existence of the lesion will hinder 

the opacification process more or less [15], leading to the decrease of 

TSCT, it is reasonable to use TSCT as an indicator of coronary artery 

disease. Consequently, we make link between sequence recovery 

capability and coronary artery disease.  

 

2.2. Outcome Measure  

 

In this study, we used the SYNTAX score as an indicator to CABG as 

the outcome measure according to “2018 ESC/EACTS Guidelines on 

myocardial revascularization” [16] that patients with SYNTAX score ≥ 

23 are suggested to conduct CABG. We verified the relationship 

between sequence recovery capability and SYNTAX Score in two folds: 

An experiment & an unsupervised language model. 

 

2.3. An Experiment Indicating the Equivalence between 

Sequence Recovery Capability and Syntax Score 

 

We implemented an experiment to validate that the sequence recovery 

capability is an indicator of syntax score. The experiment design 

architecture was illustrated in (Figure 1). 7 cardiology physicians and 12 

ordinary people participated in this experiment. A questionnaire was 

designed and sent to each of them. The questionnaire sample was 

attached in (Supplementary Material Section 4). All the subjects were 

asked to recover 9 time-shuffled coronary angiographies. We asked the 

19 subjects to complete their answers of sequence recovery in 10 minutes 

independently. We used Cohen's kappa [17] to measure the agreement 

between the true sequence and the subjects’ predictions, the detailed 

results were illustrated in (Section 3.1).  

 

2.4. An Unsupervised Language Model to Recover Sequence 

without Labeling  

2.4.1. Data Screening 

 

From January 1st, 2016, to September 30th, 2016, we collected 4458 

unidentified coronary angiographies videos from 353 inpatient patients. 

We defined an “Interferent Set” for videos including some static 

interferent as illustrated in (Figure 2). There are 115 videos in 
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“Interferent Set”. We defined a “Useless Set” for videos of low quality 

as illustrated in (Figure 2). We excluded “Useless Set” as they are 

meaningless. There are 2522 videos in “Useless Set”. But we included 

“Interferent Set” so as to demonstrate that DZL is robust to such static 

data noise.  

We got 746 RCA and 1190 LCA videos remaining. We randomly 

divided the 353 patients into 5 groups. We alternatively assigned 1 group 

as the test set and the other 4 groups as the training set. 5-folder 

validation was then done in turn.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The experiment. The experiment design architecture is illustrated in the left frame. The experiment results are illustrated in the right frame. It is 

shown that the best prediction performance happened when physicians predicted the normal cases (within yellow dotted frame, almost filled in red indicating 

correct predictions). In other words, it is easy for physicians to recover the order of normal cases. The poorest prediction performance happened when 

ordinary people predicted the abnormal cases (within purple dotted frame, almost filled in blue indicating wrong predictions). Furthermore, it is clear that 

both physicians and ordinary people are better able to recover the normal cases than the abnormal cases. These observations are consistent with our theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The two specific sets. The useless set is exemplified in the left frame including “Out of the Boundry” (the vessel tree are partially out of the boundary 

of the video), “Conducting Wire” (there is conducting wire through the vessel tree), “Unrelated” (the content of the video is not related to the target vessel 

tree) and “No Perfusion” (the contrast agent is not completely opacified). The interferent set is exemplified in the right frame including “Chest Steel Wire” 

(there is steel wire in the chest of the patient) and “Interferent” (there is unrelated static interferent in the video). 
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2.4.2. The Model 

 

Based on the novel method and its effectiveness, we designed and 

implemented an unsupervised language model to learn the capability to 

recover the shuffled sequence of coronary angiography. according to 

Sutskever [6], we shuffled the frames in a reversed order (video 

rewinding) and the unsupervised language model worked to recognize 

the true order. The model framework was illustrated in (Supplementary 

Figure 5). The encoder was iterated in image level, each input was the 

optical flow value of pixels on the image. Through a GRU that generated 

its output and the hidden layer. The current hidden layer then acted as 

part of the next input. The decoder worked image by image. Given the 

encoder fixed context vector and the current target, bypassing a GRU to 

predict the next target.  

 

The loss of the model was the MSE between the true vertical coordinate 

sequence of the optical flow and the predicted. It was used as a 

measurement of sequence recovery capability. The details of the 

language model were given in (Appendix Section 2). The unsupervised 

language model was termed disarranged zone learning (DZL). The 

overall framework of DZL was illustrated in (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The overall framework for DZL. The overall model can be divided into three parts, including the disarranged, zone and learning. The disarranged 

part is functional to disorder the frames of W video. We shuffled the video frames in a reversed order. The zone part is functional to generate an effective 

zone to capture the sequence information of the video. The learning part is to learn how to recover the disarranged order accordingly. For DZL, an encoder 

decoder GRU (gated recurrent unit) neural network is designed and applied to act as the core of the unsupervised language model. 

 

3. Results 

3.1. The Experiment  

 

The Cohen kappa matrix between subjects’ predictions and the true 

sequences were listed in (Table 1) and visualized in (Figure 1). From the 

results, the agreement between predictions and the true sequence was 

higher in “normal” than “abnormal” no matter the subject was physician 

or ordinary people. Besides, physicians’ prediction agreements were 

overall higher than ordinary people in both groups as physicians have 

affluent clinical experience and practice to make diagnosis from the 

coronary angiography. Also notice that even for experienced physicians, 

the shuffled frames of abnormal cases were not easy to be recovered. 

The Cohen kappa was only 0.48. Let alone for ordinary people, the 

Cohen kappa was merely 0.25. However, it is much easier for physicians 

to recover the shuffled frames of normal cases. The Cohen kappa reached 

0.89. Even for ordinary people without any medical experience, the 

Cohen kappa reached 0.56. Despite that 0.56 did not indicate high 

prediction capability, it was enough to gain the advantage over the 

ordinary people’s capability to predict the abnormal case (Cohen kappa 

0.25). Consequently, it was the relative distance between abnormal and 

normal cases counted instead of the absolute value. The detailed 

confusion matrixes of physicians and ordinary people were given in 

(Supplementary Material Section 4). The AUC of RCA achieved in the 

experiment from 7 professional physicians is 92.  

 

Table. 1. Cohen kappa matrix between subjects’ predictions and true sequence.  
Physicians Ordinary People 

Abnormal 0.48 0.25 

Normal 0.89 0.56 

 Physicians 

Area Under the Curve (AUC) 92 
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3.2. Automation Model 

3.2.1. Non-Invasive 

 

DZL is a software based model. The input of the model is a whole 

coronary angiography video. The output of the algorithm is a DZL score 

indicating the sequence recovery capability. It is non-invasive. We 

verified the performance of DZL in indicating CABG (SYNTAX Score 

>=23). The main results were listed in (Table 2). The average AUC of 

the five-folder validation was 80.08 for CABG indicator 

(SYNTAX>=23).  

 

Table. 2. Main performance results (Hidden Size = 5000).   

SYNTAX>=23  

Group 1 Group 2 Group 3 

AUC-median--%(95% CI) 82.129（70.312-91.216） 89.16（76.953-98.438） 78.893（67.128-89.451） 

Sensitivity -- %(95%CI) 100.0（75.0-100.0） 100.0（100.0-100.0） 100.0（85.294-100.0） 

Specificity -- %(95%CI) 68.75（46.875-90.625） 87.5（75.0-96.875） 64.706（47.059-82.353） 

Positive predictive value -- %(95%CI) 74.419（65.306-88.889） 88.889（80.0-96.97） 73.913（65.385-82.937） 

Negative predictive value -- %(95%CI)  100.0（75.0-100.0） 100.0（100.0-100.0） 100.0（83.321-100.0）  

Group4 Group5 
 

AUC-median--%(95% CI) 70.222（55.331-82.222） 80.017（67.904-90.052） 
 

Sensitivity -- %(95%CI) 56.667（40.0-100.0） 76.471（58.824-91.176） 
 

Specificity -- %(95%CI) 93.333（33.333-100.0） 88.235（73.529-97.059） 
 

Positive predictive value -- %(95%CI) 89.474（60.0-100.0） 86.207（74.194-96.552） 
 

Negative predictive value -- %(95%CI)  68.182（60.417-100.0） 78.049（68.182-90.909） 
 

  

5 Groups AUC Mean 80.084 

* Note: The blank cells stand for data not available. AUC: Area Under the Curve. SYNTAX: Synergy between percutaneous coronary intervention (PCI) 

with taxus and cardiac surgery. Bootstrapping was used to estimate 95% confidence intervals (CI) for the performance metrics of our classification results 

(i.e., AUC, sensitivity, specificity). We applied n-out of-n bootstrap with replacement from our dataset. For each bootstrap sample, we calculated and 

reserved the performance metrics for that bootstrap sample. The bootstrap sampling was repeated for 2000 times. We then estimated the 95% CI by using 

the 2.5 and 97.5 percentiles of the empirical distribution of corresponding metrics. All the results retain 3 decimal places, unless the last decimal is 0. 

 

3.2.2. Efficient 

 

DZL is an Efficient algorithm. For example, existing QFR with reported 

median analysis time is 5 min in the FAVOR II Europe-Japan study [18]. 

However, DZL could be calculated within 30 seconds. The detailed 

calculation time distributions are listed in (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Distributions of the calculation time. The distribution of the calculation time for RCA (right coronary artery) is illustrated in the left. The distribution 

of the calculation time for LCA (left coronary artery) is illustrated in the right. The maximum calculation time is within 30 seconds. 

 

3.2.3. Robust 

 

Importantly, flow could/frequently is different in the right coronary 

artery compared with the left (diastolic). However, we found DZL 

effective in both branches. We added the RCA DZL scores and LCA 

DZL scores together as the final DZL scores to evaluate each video. 

Furthermore, we also included “Interfered Set” in the training and testing 

process. Last but not least, we distinguished the RCA videos from 3 

angles: a). LAO30°; b). CRA30°; c). RAO30° and we distinguished 

the LCA videos from 6 angles: a). CAU20°; b) RAO30°+CAU20°; 
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c) LAO45°+CAU20°; d) CRA30°; e) RAO30°+CRA20°; f) 

LAO45°+CRA20°. The overall angle distributions of RCA and LCA 

in the 5 groups were illustrated in (Figure 5). Consequently, DZL was 

robust to different angiography angles as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Distributions of different angles of 5 groups. We distinguished the RCA videos from 3 angles: a). CRA30°; b) LAO30°; c) RAO30°; We 

distinguished the LCA videos from 6 angles: a) CAU20°; b) CRA30°; c) LAO45°+CAU20°; d) LAO45°+CRA20°; e) RAO30°+CAU20°; f) 

RAO30°+CRA20°. All the videos with these angles were participated in the training and testing process, demonstrating the robustness of DZL in this 

perspective. (LAO: Left Anterior Oblique; RAO: Right Anterior Oblique; CRA: Cranial). 

 

4. Discussion 

4.1. Dynamic Diagnosis Based on Coronary Angiography Video 

 

As a typical example, Moon et al. (2021) [19] used CNN to achieve the 

automatic recognition of coronary lesion based on coronary 

angiography. However, the preprocessing technique of their method was 

to select key frames instead of utilizing the whole coronary angiography 

video. Besides, their method was a purely supervised learning which 

needs manual label efforts a lot. Our model was based on analysis of the 

whole coronary angiography video instead of separated images which 

was dynamic.  

 

4.2. Label Free 

 

There are many mature annotation libraries in image recognition, the 

most famous one is ImageNet [20], and there are some other annotation 

libraries in video recognition such as kinetics. These databases covered 

general scenarios. However, in the field of medical imaging, especially 

coronary angiography, there is no mature annotation library developed. 

For studies using deep learning techniques in this field, researchers need 

to complete the label engineering by themselves which is costly since 

the annotation must be finished by professional doctors [21-27]. This 

makes the development of deep learning, especially supervised learning 

in medical image field greatly limited.  

 

According to statistics by May 2020 from OECD (Organization for 

Economic Cooperation and Development), the average annual income 

of a specialist in hospitals of United States is 350300 dollars, and for a 

GP is 242400 dollars. That is to say, a specialist earns up to $168 an hour 

and a GP earns up to $116 an hour, even without taking into account 

national holidays. Doctors estimated that it took about 10 to 15 minutes 

to fully evaluate a coronary angiography. If a junior GP is assigned to 

annotate a video, the cost is as high as $30 for each coronary 

angiography. In terms of deep learning, a lot of labeled angiographies 

are needed. For example, in this paper, 746 RCA angiographies and 1190 

LCA angiographies were used, not to mention some larger dataset 

(Supplementary Figure 6). 

 

4.3. Potential of DZL 

 

We inferred that DZL still has great potential to be improved since the 

model used optical flow technology and an effective zone was generated 

to represent sequence feature between frames which was an idea of 

dimension reduction. The dimension of the model input was reduced by 

more than 50 times (We randomly selected 5000 points from the 

“Restricted Zone (5243 points)” from the 512*512 whole set (hidden 

size = 5000), (Supplementary Material Section 2)) while the 

performance of the model was maintained in a good level. Dimension 

reduction brought about the loss of information and abstraction of 

features, causing the AUC deteriorated. If we enhance the parallel 

computing power of computers, such as using GPU with larger memory 

or more quantity (current GPU setting: single NVIDIA GeForce RTX 

3090-24G) to design and implement the model so as not to reduce the 

dimension too much, it could thus improve the AUC. To demonstrate 

such argument, we attached the final results (Table 3) of the model only 

randomly selecting 1500 points from the “Restricted Zone” from the 

512*512 whole set (hidden size = 1500), the results deteriorated a lot as 

expected. Such counter-operation demonstrated on the other hand that 

the quantities of points selected were positively related with the final 

performance.  

 

Table. 3. Results for hidden size =1500. 
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SYNTAX>=23  

Group 1 Group 2 Group 3 

AUC-median--%(95% CI) 72.549（59.375-84.774） 76.27（60.938-89.062） 71.972（58.997-83.912） 

Sensitivity -- %(95%CI) 75.0（46.875-87.5） 100.0（100.0-100.0） 73.529（47.059-100.0） 

Specificity -- %(95%CI) 81.25（65.625-96.875） 71.875（56.25-87.5） 76.471（44.118-94.118） 

Positive predictive value -- %(95%CI) 78.571（66.667-94.452） 78.049（69.565-88.889） 75.0（62.848-90.919） 

Negative predictive value -- %(95%CI)  75.0（62.5-87.5） 100.0（100.0-100.0） 74.286（62.739-100.0）  

Group4 Group5 
 

AUC-median--%(95% CI) 62.167（47.219-75.45） 71.886（57.872-83.824） 
 

Sensitivity -- %(95%CI) 63.333（20.0-100.0） 76.471（55.882-88.235） 
 

Specificity -- %(95%CI) 76.667（23.333-100.0） 82.353（70.588-94.118） 
 

Positive predictive value -- %(95%CI) 70.833（56.604-100.0） 80.645（70.0-92.857） 
 

Negative predictive value -- %(95%CI)  66.667（55.556-100.0） 76.923（65.704-87.879） 
 

  

5 Groups AUC Mean 70.968 

* Note: The blank cells stand for data not available. AUC: Area Under the Curve. SYNTAX: Synergy between percutaneous coronary intervention (PCI) 

with taxus and cardiac surgery. Bootstrapping was used to estimate 95% confidence intervals (CI) for the performance metrics of our classification results 

(i.e., AUC, sensitivity, specificity). We applied n-out of-n bootstrap with replacement from our dataset. For each bootstrap sample, we calculated and 

reserved the performance metrics for that bootstrap sample. The bootstrap sampling was repeated for 2000 times. We then estimated the 95% CI by using 

the 2.5 and 97.5 percentiles of the empirical distribution of corresponding metrics. All the results retain 3 decimal places, unless the last decimal is 0. 

 

5. Conclusion 

 

The “Sequence Value” of coronary angiography is buried deep. It is just 

like a swift horse leading a program in coronary artery disease diagnosis. 

We proposed DZL as a CABG indictor in a non-invasive, efficient and 

robust manner. In our experiment, the AUC of SYNTAX>0 reached 92. 

The model AUC of the five-folder validation reached 80.08 for 

SYNTAX>=23 as an indicator to CABG. DZL worked in an efficient 

manner and could be conducted within 30 seconds. In a nutshell, DZL is 

promising to lead a revolution in evaluation of coronary artery disease 

and we would like to invite the world to dig the gold mine. 

 

Limitations 

 

The biggest limitation of DZL is that it is dysfunctional to distinguish 

further between the LAD and LCX performance separately. DZL is 

working on video level. LCA and RCA are physically separated into 

different videos. However, there is no physical video specifically 

recording LAD or LCX alone. Such video structure limits the separated 

calculation of LAD and LCX solely. Besides, DZL is not able to locate 

the exact position of the lesions, only the overall DZL scores are 

available for RCA and LCA respectively. Last, typical image-level 

preprocessing techniques of coronary angiography were not applied in 

this work as we wanted to test the pure power of DZL. Future work could 

gradually integrate the related procedures such as segmentations, 

centerline extractions etc. into the model.  

 

Clinical Perspectives 

 

Competency in Medical Knowledge 

 

The discovery that “diagnosis of coronary artery disease can be made by 

shuffling sequence of coronary angiography video” is released. It is 

translated to an unsupervised language model termed disarranged zone 

learning to recover the shuffled sequence of coronary angiography 

video. The recovery accuracy is creatively used as an indicator to CABG.  

 

Competency in Patient Care 

 

Making diagnosis and indicate CABG in a non-invasive, efficient, robust 

manner.  

 

Translational Outlook 1 

 

Diagnosis of coronary artery disease can be made by using disarranged 

zone learning model. The model (algorithm) is software-based (non-

invasive, efficient, robust) and can be embedded into many diagnosis 

tools.  

 

Translational Outlook 2 

 

The unsupervised language model is also applicable in medical realm. 

Further clinical study is called for. Its label-free feature can relieve heavy 

burden of medical labeling engineering.  
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ATOM: A Theory of Magnitudes 

AUC: Area Under the Curve  

CAD: Coronary Artery Disease 

CAG: Coronary Angiography 

CABG: Coronary Artery Bypass Grafting 

CAU: Caudal.  

CCTA: Coronary Computed Tomography Angiography 

CMR: Cardiac Magnetic Resonance 

CMT: Conceptual Metaphor Theory 

CRA: Cranial  

CT: Computed Tomography 

DZL: Disarranged Zone Learning 

FFR: Fractional Flow Reserve 

GPU: Graphic Processing Unit 

GRU: Gated Recurrent Unit 

LAO: Left Anterior Oblique 

LCA: Left Coronary Artery 

LV: Left Ventricle 

PCI: Percutaneous Coronary Intervention 

QFR: Quantitative Flow Ratio 

RAO: Right Anterior Oblique 

RCA: Right Coronary Artery 

ROC: Receiver Operating Characteristic 

RNN: Recurrent Neural Network 

TIMI: Thrombolysis In Myocardial Infarction 

TSCT: Temporal and Spatial Coupling Tightness 
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